高精度激光准直及其可能应用

王绍民	王效敬	应成仁
周祖利	朱精敏	纪际义

(杭州大学物理系)

提 要

我们对三点法点光源的稳定性和光束传输的影响因素作了实验研究,制成一台 21 米长、精度为±0.6~0.8 微米(或±3~4×10⁻⁸)的激光准直实验装置。利用这 台装置,测出了人造断层的潮汐变化,小潮期间,24 小时水平位移最大变幅不超过11 微米。分析了用于地震预报、测定大坝变形和调整粒子加速器的可能性,讨论了广义 相对论时空弯曲对准直光束的影响。

High accuracy laser alignment and its potential applications

Wang Shaomin Wang Siaojing Yin Chengreng Zhou Zuli Zhu Jingmin Ji Jiyi

(Department of Physics, Hangzhou University)

Abstract

Experimental researches on the stability of the point light source in the "three point method" and the factors affecting the transmission of light beam were carried out, and a 21m long experimental arrangement for laser alignment with an accuracy of $\pm 0.6 \sim 0.8 \mu \text{m}$ (or $\pm 3 \sim 4 \times 10^{-8}$) was developed. The tide change of an artificial fault was measured with the arrangement, the maximum change for level displacement in 24 hours for a small tide period is within $11 \mu \text{m}$. The potentiality for prediction of earthquake, measurement of dam deformation and adjustment of particle accelarators are analyzed, effects of generalized relativistic temporal-spatial bending on aligning light beam are discussed.

输空间又难免存在空气和不均匀温度场,因此,光束产生漂移并限制了准直的精度。尽管采取了不同方案和种种措施,激光准直的 收稿日期: 1979年4月19日。

由于激光器工作时谐振腔的热变形,传

盲

一、引

54 .

精度, 若用角度中误差表示, 一般仍为 ±1× 10^{-6(1~3)} 左右。而且, 准直距离愈短, 精度就 愈难保证。

Herrmanusfeldt 等⁽⁴⁾ 成功地采用了点 光源经方形菲涅耳透镜成像(三点法),并由 圆形真空管道传输,在 3050 米的距离内,获 得高于±0.25 毫米(±1×10⁻⁷)的准直精 度。测得直线加速器数月内水平、垂直毫米 级的累计位移,满足了长距离直线加速器安 装、调整的要求。

短距离高精度在设计上有什么不同? 它还有哪些潜在的应用? 这就是本实验的主要目的。

二、实验装置概述

实验装置建立在地下 2.8 米东西向的地 道内,见图 1。地道用钢筋混凝土分两段筑 成,7 为伸缩缝。地基为 20~30 米厚的沉积 海淤泥。气温年变化 14℃±2℃,日变化 0.5℃左右。

1是普通的 190 毫米、GG-11 玻壳 的全 内腔 He-Ne 激光管,全反镜 $r_1=1$ 米、部分 反射镜 $r_2=\infty$, TEM₀₀ 模,输出功率 1.2 毫瓦;为了减少热变形,外壳包上一层 0.5 毫米厚的铜皮。2是小孔光阑, ϕ 0.08 毫米。 3是管道输入窗,8是输出窗。4是 1.3米 长、150 厘米×150 厘米见方,上下为绝热材 料,南北是金属薄板的方形管道;南北向可加 温度场,管道内可测温度梯度。5表示管道 之间是软连接的。①……④是管道的编号。 6 是成像元件,采用粗制的长焦距透镜(集光 镜制造工艺),厚4毫米、孔径6厘米。9是 硅光电池、电桥和检流计组成的可测水平或 垂直位移的光电指零检测系统。10是2X-30 真空泵。

准直距离为 20.9 米。 透镜 焦 距 为 5.5 米。位移值的最小刻度是 0.1 微米。系统的 灵敏度是 1.5~2.0 格/微米。

可见,基本原理类同于文献[4]。区别 是:准直距离短,点光源结构不同,成像元件 简单,检测系统绝对灵敏度较高,管道可加置 和测定温度场,并跨在人造的断层上。

三、光点位置的锁定

以多元件两镜腔输出镜面热变形为例, 我们已从理论上得出了激光器的光轴^[5]:

$\int x_0 =$	$\frac{(1-D)\left(a\varepsilon+\beta\varepsilon'\right)-B(\gamma\varepsilon+\delta\varepsilon')}{2-A-D},$	(1)
$\int x'_0 =$	$\frac{C(\alpha\varepsilon+\beta\varepsilon')-(1-A)\left(\gamma\varepsilon+\delta\varepsilon'\right)}{2-A-D}\circ$	(2)

式中, A、B、C、D 是谐振腔内各元件的往 返传输矩阵元, $\alpha = 1 - a$ 、 $\beta = -b$ 、 $\gamma = -c$ 、 $\delta = 1 - d$ 为变形反射镜的失调矩阵元, a、b、 -c、-d是该反射镜的传输矩阵元; ε 、 ε' 是 变形反射镜相对冷态或平衡态的平移和倾 角, x_0 、 x'_0 则为变形输出镜处的激光光轴相 对于冷态或平衡态时的平移和倾角。也就是 说,方向漂移可分解成平移和倾角两部分。这 从实验也能观测出来。例如,在环境温度为 13.45°C±0.05°C的地道里,选择三个不同 的距离,分别测定上述激光管开启后5分钟 到1个半小时内光轴水平方向的漂移,如图 2(a)所示。若将这段时间里的最大漂移量和 测定距离作图,即图 2(b),可得: $x_{0max} \approx 24$ 微米, $x'_{0max} \approx 22 \times 10^{-6}$ 。

从准直角度中误差来看,倾角漂移和准 直距离无关,但平移漂移造成的影响随距离 的缩短线性增大。因此,近距离高精度对光 源的方向稳定提出了更高的要求。

改进激光管的设计和制造工艺^[6],这是

• 55 •

图2 激光管光轴的 x 方向漂移和分解

一条途径。 让光束通过适当的光学变换, 这 是下面要讨论的第二条途径。

激光管配置相互绝热的望远镜,可使倾 角漂移缩小到角放大率分之一,但使平移漂 移扩大了角放大率倍^[2],这对远距离准直是 可取方案之一;但对近距离,则弊多利少。

三点法是一种有效的变换系统。其关键 性的部件——点光源,除了目前所采用的透 镜聚束并扩束^[4]外,我们提出一种新的结构: 利用小孔半径远小于光束半径的光阑,直接 截取由激光管输出的高斯光束,同时利用小 孔光阑的衍射,使光束充满成象元件。小孔 截束,对光束漂移有控制作用,见图 3(a)。控

. 56 .

制系数 $M = x_1/x_2$ 。这种可称为光阑三点法的系统,对光束漂移的变换,若用流图¹⁷¹表示,见图 3(b),得:

图3 光阑三点法对光点稳定性的变换

式中, F 是成象元件的焦距, u 是光阑到成像 元件的距离。(3)式的含意是: 测定处位移的 漂移, 与激光管光轴的倾角漂移无关, 仅保留 了平移漂移项; 同一系统的不同测点数值有 所不同。 但和系统的总长度是无关的, 也就 是说: 短距离要获得高精度仍然比较困难。然 后通过选择控制系数, 满足所需的精度。 这 种方法, 我们叫做光点位置锁定。

在环境温度为 13.70°C±0.10°C 的地道 里,做了一组原理性试验。光阑处高斯光束 光斑尺寸 0.28 毫米,光阑半径 0.04 毫米,成 象元件为 ϕ 1 厘米、F=88 厘米的圆形 菲涅 耳透镜,准直距离 3.52 米。对比了激光管开 启后 1 个半小时内光点垂直方向的漂移,见 图 4。得 $y_{0max}\approx$ 309 微米, $y_{2max}\approx$ 20 微米, 效果是显见的。

高稳定是牺牲功率换取的。 $P(a)/P(\infty)$ = $\int_0^a \left(\sqrt{\frac{2}{\pi}} \frac{1}{W}\right)^2 e^{-2\gamma^2/W^2} 2\pi\gamma d\gamma / \int_0^\infty \left(\sqrt{\frac{2}{\pi}} \frac{1}{W}\right)^2$ $e^{-2\gamma^2/W^2} 2\pi\gamma d\gamma = 1 - e^{-2a^2/W^2}$ 。上例中, P(0.04)

图4 光阑三点法原理性试验 (a) 激光管光轴y方向漂移; (b) 光阑三点法y方向漂移 /P(∞) ≃0.04; 与实测相符。因此,相应地 要提高检测灵敏度。成像元件换为普通的透 镜,结果也是相同的。

四、传输管道的要求

准直光束经空气传输,空气的温度梯度、 压力梯度以及温度梯度、压力梯度随时间的 变化,造成折射率梯度和折射率梯度的变化, 使光束产生折射和抖动,影响了准直的精度。 因此,高精度准直,有必要建立管道。

我们从折射定律的微分形式和空气折射 率与温度、压力的关系式出发,可以导出温度 梯度、压力梯度与准直误差的一般关系式:

$$\Delta x, \ \Delta y = \frac{z^2}{2} \frac{\sin i}{n} \frac{T_0}{P_0} (n_0 - 1) \\ \left(\frac{1}{T} \frac{\partial P}{\partial W} - \frac{P}{T^2} \frac{\partial T}{\partial W}\right), \qquad (4)$$

式中, z 是传输距离, i 是传输方向与温度梯度、压力梯度的夹角, n 是空气折射率, no 是标准态空气折射率, T 和 P 分别是绝对温度和气压, To 和 Po 分别是标准态的绝对温度和气压; 4x、4y是由此而引起的水平方向和垂直方向的准直误差。

管道抽真空的作用,可用方形管道人为 加置温度场,进行实验观察。③-⑥、⑨-⑫8 节管道的南侧,各安一条1000 瓦电热丝,电 压加至160 伏左右,形成人造温度梯度。在 相同热源不同气压下,温度场分布的例子,如 图 5 所示。气压、不同部位加置温度场,对准 直精度及光束折射的影响,见表 1。可以认 为:由于空气对流热交换,因而在相同热源作 用下气压愈高温度梯度愈小。但是,温度梯 度是和气压的乘积影响准直精度的;所以,在 难免存在热源的情况下,抽真空与否,测定误 差和光束移动有明显区别。传输管道抽真空 是提高精度和保证测定值可靠性的重要措 施。

(a) -760 托; (b)-0.4 托

	1.1
一元	16.7
20	1000

管道气压 (托)	加置温度场	测定中误差 (微米)	光束移动 (微米)	
760		±3.2	- 147	
	3~6	± 34.6		
5	No.	± 1.5	-20	
	3~6	±1.8		
760		± 5.4	110	
	9~12	± 17.5	-119	
1.,		± 1.3	0	
	9~12	±1.8	-9	

真空度可按准直距离、所需精度 和现场 条件合理 选取。例如: $z\approx20$ 米,要求精度 $\pm5\times10^{-8}$,可取 $\Delta x\simeq\Delta y\approx3$ 微米;设 i=0, 考虑 $n\approx1$,并将 $T_0\approx273$ K、 $P_0=760$ 托、 $n_0\simeq1.0003$,代入(4)式,得出对传输管道的 要求为:

$$\left(\frac{1}{T} \frac{\partial P}{\partial x, y} - \frac{P}{T^2} \frac{\partial T}{\partial x, y} \right)$$

≈1.4×10⁻⁶ 托/厘米·K。 (5)

假定两项均匀分配,则:

 $\begin{cases} \left| \frac{\partial P}{\partial x_{y}} \right| < 1.9 \times 10^{-4}$ 托/厘米, (6) $\left| P \cdot \frac{\partial T}{\partial x_{y}} \right| < 4 \times 10^{-2}$ 托·K/厘米。

在地道里,温度的日变化在0.5℃以内,管道 两侧的温差不会超过0.2℃,再由图5温度 场分布推算,管道中心的温度梯度约为 0.01℃/厘米。由(6)式可知,真空度为4托 时,就可满足精度的要求。

和点光源的要求相反,管道愈长,真空度要求愈高。

五、初步测定结果

在不同的时段里,检查了整套装置的一次测定中误差。 x 方向分 60 组,每 10 分钟 测 10 次为一组,算得的中误差是 ± 0.70 微米,或 $\pm 3.3 \times 10^{-8}$ 。y 方向分 38 组,得 ± 0.66 微米,或 $\pm 3.1 \times 10^{-8}$ 。

准直光束长时间连续变化,具有一定的 规律,举列于图 6。

六、可能应用举例

1. 测定地壳形变,预报地震

测定地壳形变,特别是断层的错动,是研 究地球构造的运动规律,掌握地震前兆,预报 地震的一种手段。目前,测定 y 方向倾斜的 主要仪器是水平摆和水管倾斜仪,测定 z 方 向伸缩的仪器是激光干涉仪。

若用高精度准直,可测 y、x 方向。图 6 中,大潮期间,24小时&方向最大变幅为 0.02 毫米, 相当于1×10⁻⁶ (或 0.2"), 具有 月、日潮汐影响的双峰特征。小潮,最大变幅 为0.01毫米(5×10-7或0.1"),也有双峰。 这些变化,和气压,温度的微小变化没有明显 的依赖关系。离装置西南方约2千米杭州地 震台东西向安置在石英砂岩洞里的水平摆, 在相应时间里y方向的最大变幅分别为 0.04"和0.03"。离装置南方约4千米钱江 水文站, 在相应时间里 y 方向水位的最大变 幅分别为24厘米和12厘米。联系到地道基 础的地质条件,可以初步认为:所测出的变 化, 主要是地道伸缩缝(人造断层)在固体潮 和钱江潮(通过固体传递和地下水位)的混合 影响。

高精度准直, 为测定地倾斜和断层位移, 特别是大范围 @ 方向的错动, 提供了一种可 能方法。

2. 大坝外部变形的高精度自动化测量

大坝水平位移的测定,目前的主要方法 是:视准线、引张线、激光测距、激光照准、大 气中激光三点准直,但仍满足不了日益发展 的生产需要。垂直位移的测定,则另用一套 二等水准。

通过上述试验,有可能做到:垂直位移、 水平位移同时测定,精度提高十倍左右,效率 提高数十倍,操作人员减少到四分之一,并可 配置 xy 自动记录仪。

3. 安装、调整粒子加速器

直线加速器或回旋加速器的直线段,准 直要求一般高于 ±1×10⁻⁷。 这是其它任 何 方法无法满足的。长距离 (3050 米),国外已 有成功的经验。

上述试验和分析表明:短距离对光源稳 定性要求较高,但对温度场和真空度的要求 可以放宽。选择没有断层的坚实的地基地质 结构,并尽量避开朔望、利用上下弦时装校。 则,从 20 米到 3000 米的范围内,达到要求 的精度,从激光技术上说,没有原则的困 难。

七、时空弯曲的讨论

引力场造成的时空弯曲,对准直光束会 产生轻微的影响。我们从广义相对论¹⁸³出发, 对有限范围做进一步的演算,有:

$$\begin{cases} \theta_{1} = \frac{4GM}{c^{2}R} \left\{ \frac{z/2}{[(z/2)^{2} + R^{2}]^{1/2}} - \frac{z/2}{[(z/2)^{2} + R^{2}]^{3/2}} \cdot R^{2}/z \right\}; \quad (7) \end{cases}$$

$$\theta_2 = \frac{4GM}{c^2 R}, \quad \underline{\cong} \ z \gg R; \tag{8}$$

$$\left[\theta_3 = \frac{4GM}{c^2R} \cdot \frac{z}{4R}, \ \ \underline{z} \ll R_{\circ} \tag{9}\right]$$

式中, G 是引力常数, M 是天体质量, c 是 光速, R 是撞碰参数, z 是准直距离; θ 是因 此而产生的光线偏折角度。

运用(8)、(9)两式,可算得日、地、月对准 直光束的直接影响,列于表 2。在目前的准 直距离和准直精度范围内,引力场的影响可 以忽略不计。

表 2

			and the second second	and the second second
光束位置	光束长度	H	地	月
天体表面	~	8.5×10^{-6}	3×10-9	1×10-10
地球表面	~	4×10 ⁻⁸	3×10^{-9}	6×10^{-13}
	3000米	2×10^{-16}	4×10^{-13}	1×10-18
	20米	1×10^{-18}	2×10^{-15}	8×10-21

参考文献

- A. Chrzanowski et al.; Appl. Opt., 1972, 11, No. 12, 319.
- [2] 王绍民,王效敬,周祖利;《激光》.1978,5, No. 1, 12.
- [3] P. W. Harrison; Water Power & Dam Construction, 1978, 30, No. 4, 52.
- [4] W. B. Herrmanusfeldt et al.; Appl. Opt., 1968, 7, No. 6, 995.
- [5] 王绍民,《杭州大学学报(自然科学版)》, 1979, No. 3,42.
- [6] 郁曾期; 《激光》, 1979, 6, No. 3, 33.
- [7] 王绍民; 《激光》, 1979, 6, No. 2, 1.
- [8] L. I. Schiff; Am. J. Phys., 1960, 28, 340.